Optimization of the method for detecting stx₁, stx₂ and eae genes according to ISO 13136:2012 using endpoint PCR from E. coli strains

Authors

DOI:

https://doi.org/10.62035/rca.6.82

Keywords:

foodborne diseases, enterohemorrhagic escherichia coli, escherichia coli O157, shiga-toxigenic escherichia coli, validation study, polymerase chain reaction

Abstract

Shiga toxin-producing Escherichia coli (STEC) causes sporadic cases and outbreaks of diarrhea, with or without bloody stools, as well as hemolytic uremic syndrome (HUS). The O157:H7 serotype is endemic and the most prevalent in our country. Shiga toxins, intimin protein, and enterohemolysin are the main virulence factors. Foods at risk of STEC contamination include meat products, mainly those from butcher shops that do not implement good manufacturing practices or from unauthorized establishments. In this study, Annex C was optimized: Identification of STEC by multiple PCR amplification of virulence genes and detection of PCR products in agarose gel, of the ISO 13136:2012 “Microbiology of food and feedPCR-based methods for the detection of foodborne pathogens-Plaque method for the detection of STEC and the determination of serogroups O157, O111, O26, O103 and 0145”. This allowed for the implementation of a methodology to detect toxin-producing genes, stx₁, and stx₂, as well as the adherence factor gene eae. Additionally, the specificity and sensitivity of the methodology were verified, along with the evaluation of the robustness of the dye, thus guaranteeing the reliability of the results. The implementation of this methodology enables the Microbiology Service to confirm the STEC strains, isolated from food samples, using endpoint PCR, a more cost-effective technique than real-time PCR. This will help the laboratory optimize resources while facilitating the implementation of fundamental prevention and control strategies to reduce the morbidity and mortality associated with HUS and collaborate with the epidemiological studies in our country.

Author Biographies

Agustín Albanesi, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica

Servicio de Microbiología; Departamento Laboratorio Nacional de Referencia; Dirección de Fiscalización y Control; INAL-ANMAT. Buenos Aires, Argentina.

Mariana Aybar, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica

Servicio de Microbiología; Departamento Laboratorio Nacional de Referencia; Dirección de Fiscalización y Control; INAL-ANMAT. Buenos Aires, Argentina.

Soledad Sarniguet, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica

Servicio de Microbiología; Departamento Laboratorio Nacional de Referencia; Dirección de Fiscalización y Control; INAL-ANMAT. Buenos Aires, Argentina.

Josefina Cabrera, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica

Servicio de Microbiología; Departamento Laboratorio Nacional de Referencia; Dirección de Fiscalización y Control; INAL-ANMAT. Buenos Aires, Argentina.

Silvana Ruarte, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica

Servicio de Microbiología; Departamento Laboratorio Nacional de Referencia; Dirección de Fiscalización y Control; INAL-ANMAT. Buenos Aires, Argentina.

References

Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Strockbine NA. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. Journal of clinical microbiology. 2012 Sep;50(9):2951-63. DOI: https://doi.org/10.1128/JCM.00860-12

Kawano K, Okada M, Haga T, Maeda K, Goto Y. Relationship between pathogenicity for humans and stx genotype in Shiga toxin-producing Escherichia coli serotype O157. European Journal of Clinical Microbiology & Infectious Diseases. 2008 Mar;27(3):227-32. DOI: https://doi.org/10.1007/s10096-007-0420-3

Persson S, Olsen KE, Ethelberg S, Scheutz F. Subtyping method for Escherichia coli Shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. Journal of clinical microbiology. 2007 Jun;45(6):2020-4. DOI: https://doi.org/10.1128/JCM.02591-06

Miliwebsky E, Deza N, Zolezzi G, Baschkier A, Carbonari C, Manfredi E, D’Astek B, Chinen B, Rivas M. Manual de procedimientos: Escherichia coli productor de toxina Shiga en el marco de la detección de E. coli diarreigénico. Ciudad Autónoma de Buenos Aires: ANLIS Dr. C. G. Malbrán, 2019. (ANLIS/INEI/MPY ARG;2019).

Rivas M, Miliwebsky E, Chinen I, Deza N, Leotta GA. Epidemiología del síndrome urémico hemolítico en Argentina. Diagnóstico del agente etiológico, reservorios y vías de transmisión. Medicina. 2006;66(supplement 3):27-32.

Yang X, Sun H, Fan R, Fu S, Zhang J, Matussek A, Xiong Y, Bai X. Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxinproducing Escherichia coli strains in China. Scientific reports. 2020 Feb 24;10(1):1-9. DOI: https://doi.org/10.1038/s41598-020-60225-w

Alconcher LF, Rivas M, Lucarelli LI, Galavotti J, Rizzo M. Shiga toxin-producing Escherichia coli in household members of children with hemolytic uremic syndrome. European Journal of Clinical Microbiology & Infectious Diseases. 2020 Mar;39(3):427-32. DOI: https://doi.org/10.1007/s10096-019-03738-1

Cody EM, Dixon BP. Hemolytic uremic syndrome. Pediatric Clinics. 2019 Feb 1;66(1):235-46. DOI: https://doi.org/10.1016/j.pcl.2018.09.011

Gyles CL. Shiga toxin-producing Escherichia coli: An overview. J Anim Sci 2007; 85: E45-62. DOI: https://doi.org/10.2527/jas.2006-508

Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, Neira V, Martínez V, Johnson T, Fuentes-Castillo D, Sano E. Genomic epidemiology of shiga toxin-producing escherichia coli isolated from the livestock-food-human interface in South America. Animals. 2021 Jun 22;11(7):1845. DOI: https://doi.org/10.3390/ani11071845

World Health Organization. Shiga Toxin-producing Escherichia Coli (STEC) and Food: Attribution, Characterization and Monitoring. World Health Organization; 2019 Jan 22.

Shiga toxin-producing Escherichia coli (STEC) and food: attribution, characterization, and monitoring. Food and Agriculture Organization of the United Nations World Health Organization Rome, 2018.

Michino, H., Araki, K., Minami, S., Takaya, S., Sakai, N., Miyazaki, M., ... & Yanagawa, H. (1999). Massive outbreak of Escherichia coli O157: H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. American journal of epidemiology, 150(8), 787-796. DOI: https://doi.org/10.1093/oxfordjournals.aje.a010082

Frank, C., Werber, D., Cramer, J. P., Askar, M., Faber, M., an der Heiden, M., ... & Krause, G. (2011). Epidemic profile of Shigatoxin–producing Escherichia coli O104: H4 outbreak in Germany. New England Journal of Medicine, 365(19), 1771-1780. DOI: https://doi.org/10.1056/NEJMoa1106483

Alconcher LF, Balestracci A, Coccia PA, Suarez AD, Ramírez FB, Monteverde ML, Perez y Gutiérrez MG, Carlopio PM, Principi I, Estrella P, Micelli S. Hemolytic uremic syndrome associated with Shiga toxin-producing Escherichia coli infection in Argentina: update of serotypes and genotypes and their relationship with severity of the disease. Pediatric Nephrology. 2021 Sep;36(9):2811-7. DOI: https://doi.org/10.1007/s00467-021-04988-y

Ministerio de Salud de la Nación. Boletín integrado de vigilancia N560 SE30 2021.

Gómez D. Aislamiento y caracterización de Escherichia coli productor de toxina Shiga en hamburguesas supercongeladas y quesos de pasta blanda. Rev. argent. microbiol. 2002:66-71.

Oteiza JM, Chinen I, Miliwebsky E, Rivas M. Isolation and characterization of Shiga toxin-producing Escherichia coli from precooked sausages (morcillas). Food Microbiology. 2006 May 1;23(3):283-8. DOI: https://doi.org/10.1016/j.fm.2005.04.003

Meichtri L, Miliwebsky E, Gioffré A, Chinen I, Baschkier A, Chillemi G, Guth BE, Masana MO, Cataldi A, Rodrı́guez HR, Rivas M. Shiga toxin-producing Escherichia coli in healthy young beef steers from Argentina: prevalence and virulence properties. International journal of food microbiology. 2004 Nov 1;96(2):189-98. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.018

Masana MO, D’ASTEK BA, Palladino PM, Galli L, Del Castillo LL, Carbonari C, Leotta GA, Vilacoba E, Irino K, Rivas M. Genotypic characterization of non-O157 Shiga toxin– producing Escherichia coli in beef abattoirs of Argentina. Journal of food protection. 2011 Dec;74(12):2008-17. DOI: https://doi.org/10.4315/0362-028X.JFP-11-189

Costa M, Londero A, Brusa V, Galli L, Van Der Ploeg C, Roge A, Leotta GA. Characterization and molecular subtyping of Shiga toxin–producing Escherichia coli strains in provincial abattoirs from the Province of Buenos Aires, Argentina, during 2016-2018. Preventive veterinary medicine. 2020 Oct 1;183:105133. DOI: https://doi.org/10.1016/j.prevetmed.2020.105133

Brusa V, Restovich V, Signorini M, Pugin D, Galli L, Díaz VR, Arias R, Leotta GA. Evaluation of intervention measures at different stages of the production chain in Argentinian exporting abattoirs. Food Science and Technology International. 2019 Sep;25(6):491-6. DOI: https://doi.org/10.1177/1082013219836326

Brusa V, Costa M, Padola NL, Etcheverria A, Sampedro F, Fernandez PS, Leotta GA, Signorini ML. Quantitative risk assessment of haemolytic uremic syndrome associated with beef consumption in Argentina. PLoS One. 2020 Nov 13;15(11):e0242317. DOI: https://doi.org/10.1371/journal.pone.0242317

Genome Information by Organism Escherichia coli O157:H7 str. EDL933. National Library of Medicine, National Center for Biotechnology Information. Consultado el 5/3/22. Disponible en https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/167/Escherichia%20coli%20O157:H7%20str.%20EDL933

Pihkala, N. (2012). Risk profile for pathogenic non-O157 Shiga toxinproducing Escherichia coli (non-O157 STEC). Office of Public Health Science, Office of Policy and Program Development, Food Safety and Inspection Service, United States Department of Agriculture.

Leotta GA, Chinen I, Epszteyn S, Miliwebsky E, Melamed IC, Motter M, Ferrer M, Marey E, Rivas M. Validación de una técnica de PCR múltiple para la detección de Escherichia coli productor de toxina Shiga. Revista argentina de microbiología. 2005 Mar;37(1):1-0.

Kobayashi H, Shimada J, Nakazawa M, Morozumi T, Pohjanvirta T, Pelkonen S, & Yamamoto K (2001). Prevalence and characteristics of Shiga toxin-producing Escherichia coli from healthy cattle in Japan. Applied and Environmental Microbiology, 67(1), 484-489. DOI: https://doi.org/10.1128/AEM.67.1.484-489.2001

Paton AW, Paton JC. Direct detection of Shiga toxigenic Escherichia coli strains belonging to serogroups O111, O157, and O113 by multiplex PCR. Journal of Clinical Microbiology. 1999 Oct 1;37(10):3362-5. DOI: https://doi.org/10.1128/JCM.37.10.3362-3365.1999

Huang Q, Baum L, Fu WL. Simple and practical staining of DNA with GelRed in agarose gel electrophoresis. Clinical Laboratory Journal For Clinical Laboratories And Laboratories Related. 2010 Jan 1;56(3):149.

UView Loading dye 6x Bio-Rad. Disponible en https://www.bio-rad.com/es-ar/sku/1665112EDU-uview-6x-loading-dye1-ml?ID=1665112EDU

Samadpour M, Barbour MW, Nguyen T, Cao TM, Buck F, Depavia GA, ... & Stopforth JD (2006). Incidence of enterohemorrhagic Escherichia coli, Escherichia coli O157, Salmonella, and Listeria monocytogenes in retail fresh ground beef, sprouts, and mushrooms. Journal of food protection, 69(2), 441-443. DOI: https://doi.org/10.4315/0362-028X-69.2.441

Schroeder CM, Zhao C, DebRoy C, Torcolini J, Zhao S, White DG, ... & Meng J (2002). Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Applied and environmental microbiology, 68(2), 576-581. DOI: https://doi.org/10.1128/AEM.68.2.576-581.2002

Published

2025-05-13

How to Cite

Albanesi, A., Aybar, M., Sarniguet, S., Cabrera, J., & Ruarte, S. (2025). Optimization of the method for detecting stx₁, stx₂ and eae genes according to ISO 13136:2012 using endpoint PCR from E. coli strains. Revista Científica ANMAT, 6, e82. https://doi.org/10.62035/rca.6.82

Issue

Section

Original Article